
1 The diagram shows a heater coil and a resistor connected to a 12 V battery and an ammeter. The ammeter reading is 1.2 A.

(a) (i) State the equation linking voltage, current and resistance.

(1)

(ii) Calculate the voltage across the 4.0 Ω resistor.

(2)

$$V = 1.2 * 4 = 4.8V$$

Voltage =V

(iii) Show that the voltage across the heater coil is about 7 V.

(2)

$$12 - 4.8 = 7.2V$$

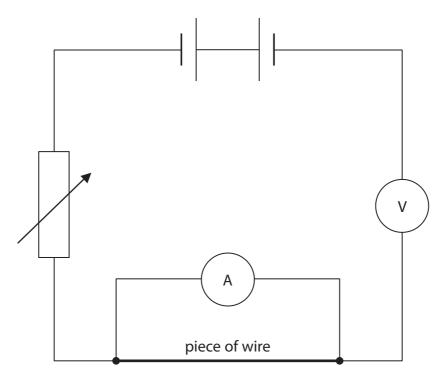
(iv) Calculate the energy transferred to the heater coil in 5.0 minutes.

(3)

$$E = P^*t = I^*V^*t = 1.2 * 7.2 * (5 * 60) = 2592J$$

Energy transferred = J

		(2)
As the water temperatu	ure increases the rate of heat lea	ving the water rises,
eventually the rate of h	eat leaving equals the rate of he	
and the temperature st	ays constant.	
(b) Resistors can be use	d as heating elements in the rear winc	ows of cars.
The diagram shows	two possible designs.	
-		
[
	X	1
(i) Complete the tal	ble by placing a tick (\checkmark) in the correct	
		(1)
Design	Series	Parallel
Design X	Series	Parallel
	Series	Parallel
X Y		
X Y	vantages and disadvantages of design	
X Y (ii) Describe the adv heater in a car w	vantages and disadvantages of design indow.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
X Y (ii) Describe the adv heater in a car w	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a
Y (ii) Describe the adv heater in a car w The wiring is simpler a	vantages and disadvantages of design indow. and possibly cheaper to manufacture.	X when used as a


(Total for Question 1 = 14 marks)

After a while, the temperature reaches a steady value below the boiling point of water.

(v) At first, the temperature of the water increases.

2 A student plans to measure the resistance of a piece of wire.

He sets up this circuit and finds that it does not work.

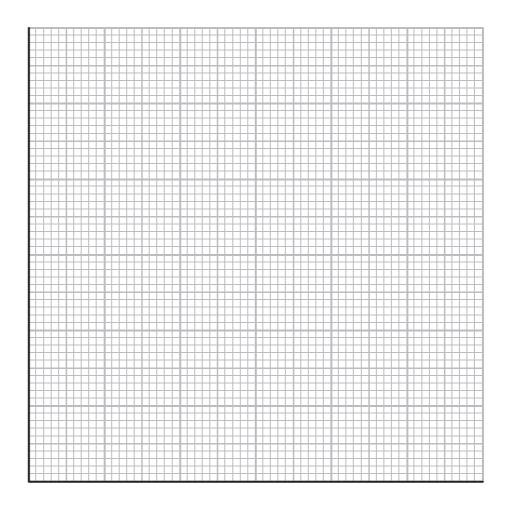
(a) Identify the three errors in the student's circuit.

(3)

cells have opposite polarity

the ammeter is in parallel not series with the wire.

the voltmeter is in series not parallel with the wire.

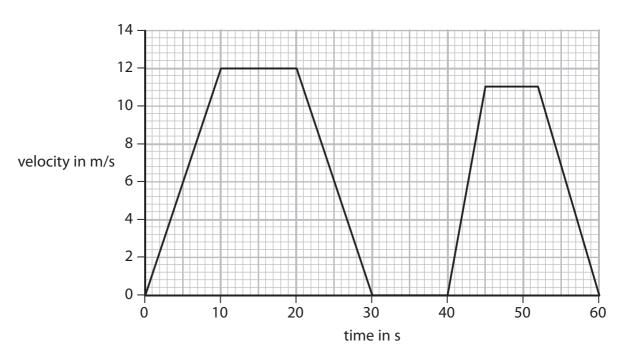

3

(b) The student uses a correct circuit to obtain these results.

Current in amps	Voltage in volts
0.00	0.0
0.24	1.5
0.71	4.5
0.89	6.0
1.00	7.5
1.10	9.0

(i) Plot a graph to show the relationship between current and voltage for the wire.

(5)



(ii) Find the current when the voltage is 2.5 V.	(1)
(iii) Suggest why the line on the graph curves.	(1)
At higher currents the wire heats up and it's resistance increases.	
(iv) Describe what else the student should do to find an accurate value for the resistance of the piece of wire at a constant temperature.	(4)
Immersing the wire in a water bath would keep it at a constant temperature student should coat the wire with an insulating material such as varnish fir otherwise the conductivity of the water might interfere with the results. The students can also use a thermometer to check that the temperature doesn't much during the experiment.	rst Э
much during the experiment.	

(Total for Question 2 = 14 marks)

4 A bus travels along a straight road.

The graph shows how the velocity of the bus changes during a short journey.

(a) (i) State the velocity of the bus after 25 s.

(1)

(ii) How long is the bus stationary during its journey?

(1)

(b) (i) State the equation linking acceleration, change in velocity and time take	n. (1)	
accel = chnage in v / change in t		
(ii) Calculate the acceleration of the bus during the first 10 seconds. Give the unit.	(3)	
a = 12 / 10 = 1.2 (m / s^2)		
acceleration = 1.2 unit m/s^	2	
(c) (i) State the equation linking average speed, distance moved and time take	n. (1)	
s = d/t		
(ii) The bus moves a total distance of 390 m during the journey.		
Calculate the average speed of the bus.	(2)	
s = 390 / 60 = 6.5m/s		
average speed =	m/s	
(d) The bus travels further in the first 30 seconds of its journey than it does during the last 30 seconds.	ng	
Explain how the graph shows this.	(2)	
the area under the graph is larger in the first 30 seconds than the las		
(Total for Question 4 = 11 marks)		